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Abstract: We study axially symmetric Euler’s system of equations for the real
gas in two space dimensions. This problem poses various difficulties for arbitrary
equation of state and general problem is still open. Deviation from ideal gas law
generally involves change of phase and more number of chemical species. This af-
fects number of degrees of freedom which is governed by phase rule. We analyze
self-similar solutions of Euler’s system of equations for the real gas (alternatively
called non-ideal gas ) which is in one phase but may contain vapor or moisture. We
find that structure of solutions in this case is governed by fundamental derivative
of underlying gas. Emergence of fundamental derivative in calculations carried out
by the authors suggest that structure of solutions to Euler’s equations in gas dy-
namics is fundamentally dependent on the thermodynamics of underlying gas. We
have considered case of zero swirl in this article.
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1. Introduction
Method of characteristics is central in dealing with hyperbolic system of partial

differential equations in one space dimension and widely discussed in the litera-
ture. However characteristic surfaces admitted by hyperbolic system of partial
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differential equations in several space variables is less studied because of compli-
cated geometries displayed by characteristic surfaces of these systems. Problem
of Euler’s system of equations for arbitrary equation of state is open. Ruggeri
[1] [3] has investigated a model for nonideal gases. We have undertaken excercise
of exploring possibilities this model of non ideal gas and Euler’s equations under
the assumption of axisymmetry. We have found that solutions in this case are
determined by so called fundamental derivative. In the first part we will list a few
properties of fundamental derivative.

2. Equation of State and Fundamental Derivative
One of the most important requirement to study gas dynamics is that un-

derlying system remain hyperbolic. Convexity of the equation of state is another
requirement that limits the description of wave motion in real gases. Van der Waals
equation models real gases with a sufficient accuracy and also takes into account
phase change. However van der Waals equation is not convex in ρ and this makes
study of solutions of Euler’s system of equations for real gases really difficult. Van
der Waals model takes into account phase change which essentially requires cor-
rection to pressure and volume in ideal gas law. One of the method in deriving
van der Waals gas from ideal gas is method of virial expansion and it leads, upon
neglecting correction to pressure term, to the model for real gases which is convex
function of ρ. Model so obtained is also given in Wu et. el. [2]. This equation
of state is used extensively by Ruggeri for the development of Extended Rational
Thermodynamics [1]. It is this model that this article concerns with and it is stated
below.

p(ρ) = A
ργ

(1− ρb)γ
(1)

Interestingly this model takes into account presence of moisture. Because of pres-
ence of moisture, one chemical component increases in the gas and it amounts to
addition of one degree of freedom to those with ideal gas. Phase rule then requires
one more intensive variable to explain dynamics of flow. We propose that additional
intensive variable sought is fundamental derivative for underlying real gas and this
article deals with how fundamental derivative explains gas dynamic waves in case of
axially symmetric flow described by Euler’s system of equations. Note that change
of phase contributes to entropy production, here no change of phase takes place
and only presence of moisture is taken into account. Fundamental derivative is
omnipresent in the literature of real gases. Thompson [4] has discussed properties
of fundamental derivatives and noted also behavior of gas when Γ < 0. For real
gases it is found that when Γ > 0 then actually Γ > 1. One of the fact about fun-
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damental derivative is that for Γ > 0 sonic point corresponds to maximum entropy
where as for Γ < 0 sonic point corresponds to point of minimum entropy. In gas
dynamics the case Γ < 0 results in anomalous behavior. In the notations used in
the present article we use the following expression for fundamental derivative.

Γ =
1√
p′
∂ρ
√
p′

∂ρ
(2)

It is well known in the literature that existence and stability of compression shocks
in gases is closely related to the condition

∂2V

∂P 2
> 0. (3)

If this condition is violated then it is observed that rarefaction shocks are sta-
ble. This quantity is not in non dimensional form. Using this derivative a non
dimensional quantity is introduced in the literature and this quantity is known as
fundamental derivative [4]. It is defined as follows

Γ =
c4

2V 2
(
∂2V

∂P 2
). (4)

For ideal gas with constant specific heats we have

Γ =
1

2
(γ + 1) (5)

where γ is adiabatic gas constant.
In ideal gas it was found that solutions depend on adiabatic exponent γ. In

the considered model so called fundamental derivative emerge as a quantity which
govern the solutions. For this equation of state we have the following expression
for fundamental derivative

Γ = 1 +
1

2
((γ − 1) +

(γ + 1)bρ

1− bρ
). (6)

3. Main Equations
Initial part of this section essentially borrowed from Zheng [5]. This article

deals with the equation of state (1). We consider the two dimensional isentropic
Euler equations

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0, (7)

(ρv)t + (ρuv)x + (ρu2 + p)y = 0.
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We assume axisymmetry; that is, we assume that solutions (ρ, u, v) have the prop-
erty:

ρ(t, r, θ) = ρ(t, r, 0),(
u(t, r, θ)
v(t, r, θ)

)
=

(
cos θ − sin θ
sin θ cos θ

)(
u(t, r, 0)
v(t, r, 0)

)
. (8)

By considering polar coordinates (r, θ) of the (x, y) plane we get the following
system of balance laws.

ρt + (ρu)r +
ρu

r
= 0,

(ρu)t + (ρu2 + p)r +
ρ(u2 − v2)

r
= 0, (9)

(ρv)t + (ρuv)r +
2ρuv

r
= 0.

Self similar analysis of (9) leads to the following equations where I = su and
K = sc. [6]

I = su and K = s
√

p′(ρ) (10)

Thus under the condition of axial symmetry and zero swirl, we have the following
initial data-

ρ(0, r, 0) = ρ0, u(0, r, 0) = u0, v(0, r, 0) = v0 = 0. (11)

Note that Γ is non-dimensional quantity and needed no transformation or change
of variable. After carrying out several manipulations we get the following system
of equations.

dK

dτ
= K(K2 − (1− I)2)−KI(Γ− 1)(1− I),

dI

dτ
= K2I − I(K2 − (1− I)2), (12)

dΓ

dτ
= (γ + 1)I(1− I)

2Γ(2Γ− γ − 1)

(1 + γ)2
,

ds

dτ
= −s(K2 − (1− I)2).

Equations (12) form an autonomous subsystem with polynomial right hand sides.
Corresponding to initial data (11) we will attempt for analyzing solutions with the
following initial condition

(I,K,Γ) = s(u0,
√
p′(ρ0),Γ0) when lim s→ 0+ (13)
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Figure 1: Near Chaotic Behavior of Γ against K at Transitional Solution.

4. Analysis and Discussion

Computations on which our analysis is based upon are all given separately in
appendix. Notable is the behavior of system of ordinary differential equations (12)
in the neighborhood of equilibrium point (synonymous to stationary point of a
dynamical system represented by system of ordinary differential equations). This
equilibrium point gives rise to, so called, transitional solution asymptotically as
self similar parameter goes to infinity. At this point I = 1/γ and K = γ2−1√

(2)γ
. At

equilibrium position Γ = γ+1
2

. Our calculations suggest that Γ shows no change
in its behavior, in fact remains very close to a constant, near all equilibrium point
except at the equilibrium point giving rise to transitional solution. Authors be-
lieve that at transitional point, which we have denoted by Q, system (12) shows
chaotic behavior. To support our claim we are giving the following diagrams. If one
disregards presence of moisture and treats dry gas then system’s behavior is very
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simple. In that case I −K plane is divided into two invariant regions separated by
separetrices for the underlying system. When we depart from ideal gas law even a
smaller (that is consider the equation of state (1)) then behavior changes drasti-
cally near Q. In this case Γ no more remains constant or near constant but shows
variation in its values in comparison with variation in K. In this case there are no
separating regions which control flow variables in respective regions but integral
curves of the system become near chaotic. Details investigations, theoretical and
numerical will consume a few more articles and here we limit ourselves to demon-
strate our findings by carefully drawn diagrams.

4.1. Transitional Solution
We want to estimate now the data (u0, ρ0) which leads to the transitional so-

lution.Transitional solution corresponds to the stationary point Q. We introduce
L := (K

I
)2. Upon simplification we get the following ordinary differential equation

for L. L is dimensionless quantity like M2.

dL

dI
=

2L

I

−LI2 + (1− I)2 − (Γ− 1)I(1− I) + 2LI2 − (1− I)2

−2LI2 + (1− I)2
, (14)

L = M−2
0 . at I = 0 (15)

We want to estimate on the lines of Zheng [6] an initial condition which leads to the
transitional solution given by Q = ( 1

2Γ−1
, 2(Γ − 1)2 Upper bound for initial Mach

number is 1√
2(Γ−1)

. Solution starting at such Mach number starts as a decreasing

function of I > 0 till I = 1
2Γ−1

. Subsequently solution remains bellow of the
two curves defined by numerator and denominator of (14) and therefore remains
decreasing until the solution reaches stationary point (I, L) = (1, 0). As it is the
case with ideal gas, in this case also solution approaches the point Q as s → ∞
since at this point (1− I)2 −K2 6= 0 and we get transitional solution as r → 0 In
this case we get the following solution:

u(r) =
1

2Γ− 1
r, p′(ρ) =

2(Γ− 1)2

(2Γ− 1)2
r2. (16)

This is an asymptotic form of the solution when r → 0. This situation is described
in 1.

5. Conclusion
Emergence of fundamental derivative while analyzing solutions of axially sym-

metric flow is an important observation. In the light of dependence of the structure
of solutions on the thermodynamics of underlying gas, we have found that this de-
pendence is owing to presence of moisture or vapor in the gas thereby increasing
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number of components due to phase rule. Authors believe that there must be some
way to make this dependence explicit in case of arbitrary equation of state. Au-
thors also believe that transitional solution shows chaotic behavior. Theoretical
investigation of existence (or nonexistence) of strange attractor for the underlying
dynamical system will shade some light on the mechanics of multi component gases.

6. Appendix

6.1. Linearization

6.1.1. Linearization at (0, 0, 0)
(12) linearizes to the following at (0, 0, 0) dI

dτ
dK
dτ
dΓ
dτ

 =

2 0 0
1 0 0
0 0 0

 I
K
Γ

+ second order terms (17)

6.1.2. Linearization at (0, 0, (1 + γ)/2)
(12) linearizes to the following at (0, 0, (1 + γ)/2) dI

dτ
dK
dτ
dΓ
dτ

 =

 −2 0 0
−γ+3

2
0 0

0 0 0

 I
K

Γ− Γ0

+ second order terms. (18)

6.1.3. Linearization at (1, 0, (1 + γ)/2)
(12) linearizes to the following at (1, 0, (1 + γ)/2)d(I−1)

dτ
dK
dτ
dΓ
dτ

 =

 0 0 0
−γ−1

2
0 0

0 0 0

(I − 1)
K

Γ− Γ0

+ second order terms. (19)

6.1.4. Linearization at (0, 1, (1 + γ)/2)
(12) linearizes to the following at (0, 1, (1 + γ)/2)d(I−1)

dτ
dK
dτ

dΓ−Γ0

dτ

 =

 2 4 0
γ+3

2
2 0

0 0 0

(I − 1)
K

Γ− Γ0

+ second order terms. (20)

6.1.5. Linearization at Q
(12) linearizes to the following at Q d(I−a)

dτ
d(K−b)
dτ
dΓ
dτ

 =

L M 0
N P γ − 1

0 0 2(γ−1)
γ2

 I − a
K − b
Γ− Γ0

+ second order terms (21)
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a =
1

γ
, b =

(γ2 − 1)
√

2

γ
,

N = γ3 + γ2 − 2γ,

M = 2
√

2
γ2 − 1

γ
,

L = 2(γ − 1),

P =
√

2
γ2 − 1

γ
.

6.1.6. Linearization at (1, 0, 0)
Linearization of (12) at (1, 0, 0) has zero linear part.d(I−1)

dτ
dK
dτ
dΓ
dτ

 =

 0 0 0
−1 0 0
0 0 0

(I − 1)
K
Γ

+ second order terms. (22)
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